DNV·GL

KEMA INSPECTION REPORT

3110-17

Object	A three-phase SF_6 gas insulated switchgear assembly, incorporating single-phase enclosed circuit breaker (CB), disconnector-earthing switch (DES), fast earthing switch (FES) and busbar				
Туре	ZFW34A-252(L)/T4000-50	Serial No.	252GIS-001, 002		
	252 kV - 4000 A - 50 kA – 50/60	Hz			
Client	CHINT Electric Co., Ltd., Shanghai, China				
Manufacturer	CHINT Electric Co., Ltd., Shanghai, China				
Inspected by	DNV GL Netherlands B.V., Arnhem, the Netherlands				
Test location	CHINT Electric Co., Ltd., Shanghai, China				
	Laboratory of Alstom Grid Techno Shanghai, China	logy Center Co., Ltd.,			
Date of tests	23 March to 28 July 2017				
Test specification	The tests have been carried out in IEC 62271-102:2013.	accordance with IEC	: 62271-203:2011 and		
Regarding	Type tests				
Summary and conclusion	The object has complied with the	relevant requirement	s of the standard.		

This report applies only to the object tested. The responsibility for conformity of any object having the same type references as that tested rests with the Manufacturer.

This report consists of 54 pages in total.

DNV GL Netherlands B.V.

J.P. Fonteijne Executive Vice President KEMA Laboratories

Arnhem, 13 November 2017

Copyright: Only integral reproduction of this report is permitted without written permission from DNV GL. Electronic copies as PDF or scan of this report may be available and have the status "for information only". The sealed and bound version of the report is the only valid version.

-3-

TABLE OF CONTENTS

4	Identification of the object tested	F
1	Define a fall and the object tested	
1.1	Ratings/characteristics of the object tested	5
1.2	Description of the object tested	5
1.3	List of drawings	/
2	General Information	. 8
2.1	Persons attending the inspection	8
2.2	The inspection was carried out by	8
2.3	Purpose of test	8
2.4	Inspection of the test set-up	8
3	Temperature-rise test	.9
3.1	Measurement of the resistance of circuits	9
3.2	Temperature-rise test on main circuit	10
3.3	Temperature-rise test of the auxiliary and control equipment	13
4	Dielectric tests	14
4.1	Power frequency voltage test (wet test)	14
4.2	Dielectric tests on auxiliary and control circuits	15
5	Proof test for enclosures	16
6	Pressure test on partitions	17
7	Mechanical endurance test (FES)	18
7.1	Measurement of the resistance of circuits	18
7.2	Measurement of the resistance of auxiliary circuits	19
7.3	Tightness test	20
7.4	Mechanical endurance test	22
7.5	Visual inspection	23
8	Mechanical endurance test (DES)	24
8.1	Measurement of the resistance of circuits	24
8.2	Measurement of the resistance of auxiliary circuits	25
8.3		
	Tightness test	26
8.4	Tightness test Mechanical endurance test	26 28
8.4 8.5	Tightness test Mechanical endurance test Visual inspection	26 28 29
8.4 8.5 9	Tightness test Mechanical endurance test Visual inspection Additional tests on auxiliary and control circuits	26 28 29 30
8.4 8.5 9 9.1	Tightness test Mechanical endurance test Visual inspection Additional tests on auxiliary and control circuits Functional tests	26 28 29 30 30
8.4 8.5 9 9.1 10	Tightness test Mechanical endurance test Visual inspection Additional tests on auxiliary and control circuits Functional tests Drawings	26 28 29 30 30 31

KEMA Labor	atories	-4-	3110-17
Appendix A	Operating characteristics of 252 I mechanical endurance tests	kV fast earthing switch (FES) during	
Appendix B	Operating characteristics of 252 I endurance tests	kV disconnector (DS) during mechanical	51
Appendix C	Operating characteristics of 252 l endurance tests	kV earthing switch (ES) during mechanical	53

3110-17

1 IDENTIFICATION OF THE OBJECT TESTED

1.1 Ratings/characteristics of the object tested

Rated voltage	252	kV
Rated current	4000	А
Rated frequency	50/60	Hz
Rated power frequency withstand voltage		
Common value	460	kV
Across the isolating distance	460 (+146)	kV
Rated lightning impulse withstand voltage		
Common value	1050	kV
Across the isolating distance	1050 (+206)	kV
Rated short-time withstand current	50	kA
Rated peak withstand current	130	kA
Rated duration of short circuit	3	S
Class of mechanical endurance	M1	
Rated SF ₆ filling pressure of circuit breaker (relative, 20 °C)	0,62	MPa
Minimum SF ₆ filling pressure of circuit breaker (relative, 20 °C)	0,55	MPa
Rated SF_6 filling pressure of other compartments (relative, 20 °C)	0,58	MPa
Minimum SF_6 filling pressure of other compartments (relative, 20 °C)	0,50	MPa

1.2 Description of the object tested

Circuit breaker (CB)

Manufacturer	CHINT Electric Co., Ltd., Shanghai, China
Type designation	NGCB2-IV
Rated control voltage	DC 220 V
Operating mechanism	Motor-spring operated
Motor manufacturer	Jiangnan Yifan Motor Co., Ltd.
Motor model No.	HDZ-210050B
Motor rating	AC / DC 220 V, 1000 W

Disconnector and earthing switch (DES)

Manufacturer	CHINT Electric Co., Ltd., Shanghai, China
Type designation	252kV GIS DES
Operating mechanism	Motor-operated, Model CJ 30
Manufacturer	Yuyao Huayu Electric Co., Ltd.
Serial No.	16300667
Rated operating time	≤ 2 s
Rated output torque	120 Nm
Control voltage	DC 220 V
Motor type	HDZ-28003C
Motor manufacturer	Jiangnan Yifan Motor Co., Ltd.
Motor rating	AC / DC 220 V, 7,5 A, 800 W

-6-

Fast earthing switch (FES)

Manufacturer Type designation Operating mechanism Manufacturer Control voltage Rated output torque Serial No. Rated operating time Motor type Motor rating Closing speed CHINT Electric Co., Ltd., Shanghai, China HYT5 Motor-spring operated Yuyao Huayu Electric Co., Ltd. DC 220V 128/200 Nm 160514115 \leq 6 s HDZ-23603C AC/DC 220 V, 3,3 A, 360 W 1,8~2,7 m/s

Basin insulator

Manufacturer Drawing No.

CHINT Electric Co., Ltd., Shanghai, China 5ZDK.720.375

-9-

3110-17

3 TEMPERATURE-RISE TEST

3.1 Measurement of the resistance of circuits

Standard and date

Standard	IEC 62271-203, subclause 6.4
Test date	11 to 12 April 2017

Environmental conditions (11 April 2017)

Ambient temperature	22	°C	Ambient air pressure	1017	hPa
			Relative humidity	53	%
Environmental conditions	s (12 April	2017)			
Ambient temperature	24	°C	Ambient air pressure	1020	hPa
			Relative humidity	50	%

Procedure

The resistance of test object was measured before and after the temperature rise test. The current used for the measurement was equal or greater than 100 A DC to obtain sufficient accuracy of the measurement.

Test Data

Measurement	Measuring	Temperature of the		Temperature of the		DC-resistance ¹⁾		Difference
between	DC-current	test object						
	А	°C		μΩ		%		
		before	after	before	after			
Central current path of test object	100	22	24	93	89	-4,3%		

¹⁾ Presented results are an average of three individual measurements.

Requirements

The measured resistances after the test shall not be increased by more than 20%.

Result

The test object passed the tests.

-10-

3.2 Temperature-rise test on main circuit

Standard and date

Standard	IEC 62271-203, subclause 6.5
Test dates	11 to 12 April 2017

Environmental conditions

Ambient temperature	24	°C	Ambient air pressure	1015	hPa
			Relative humidity	50	%

Procedure

The test object was filled with SF_6 gas at minimum functional pressure for insulation prior to the test. Per client's instruction, the test current was set to 110% rated current, 60Hz.

The test current was injected from the bushing terminal to the central current path. The current was then returned through the aluminum enclosure of the test object.

To ensure no heat was conducted away or conveyed to, the temperature of the terminal for external connection and the temperature at the temporary connections about 1 m from the terminal were measured. Their temperature difference was ensured not exceed 5 K.

The test was made over a period sufficient for the temperature rise to reach a stable value. This condition is deemed to be obtained when the increase of temperature rise does not exceed 1 K in 1 h. The temperature of the test points was measured with thermocouples.

The ambient air temperature is the average temperature of the air surrounding the test object. Three thermocouples immersed in oil equally distributed around the test object at about the average height of its current-carrying parts and at about 1 m from the test object.

Characteristic test data

Test current	4400	А
Frequency	60	Hz
Filling pressure of CB compartment (relative, 20 °C)	0,55	MPa
Filling pressure of other compartments (relative, 20 °C)	0,5	MPa

Result

The test object passed the tests.

-24-

3110-17

8 MECHANICAL ENDURANCE TEST (DES)

8.1 Measurement of the resistance of circuits

Standard and date

Standard	IEC 62271-102, subclause 6.4
Test date	15 May and 19 June 2017

Environmental conditions (15 May 2017)

Ambient temperature	24,4	°C	Ambient air pressure	1013	hPa
			Relative humidity	47,5	%
Environmental conditions (10) June 20	17)			

Environmental conditions	(19 Julie	201	.,
Ambient temperature		25	°C

Procedure

The resistance was measured before and after the mechanical endurance tests. The current used for the measurement was 100 A DC to obtain sufficient accuracy of the measurement.

Test data

Measurement between	Measuring DC-current A	Temperature of the test object °C		DC-resistance ¹⁾		Difference ⁴⁾
		before ²⁾	after ³⁾	before ²⁾	after ³⁾	
A phase of 252kV DS	100	24,4	25	11	12	+9,1%
B phase of 252kV DS	100	24,4	25	12	14	+16,7%
C phase of 25 2kV DS	100	24,4	25	12	13	+8,3%
A phase of 252kV ES	100	24,4	25	14	15	+7,1%
B phase of 252kV ES	100	24,4	25	13	14	+7,7%
C phase of 252kV ES	100	24,4	25	15	15	0

¹⁾ Presented results are an average of three individual measurements.

²⁾ Result before temperature-rise test.

³⁾ Result after temperature-rise test.

⁴⁾ Difference in DC-resistance between measurements before- and after temperature-rise test.

Requirements

For main circuit, the measured resistances after the test shall not be increased by more than 20%.

Result

The test object passed the tests.

-28-

3110-17

8.4 Mechanical endurance test

Standard and date

Standard	IEC 62271-102, subclause 6.102.3
Test date	6 to 17 June 2017

Environmental conditions

Ambient temperature	28 ± 5	°C
---------------------	--------	----

Procedure

The operating cycles of the test object were achieved by its own operating mechanisms.

For every 1000 mechanical operation cycles, the test sequence was consisted of:

- 50 operating cycles of "CO" at maximum supply voltage;
- 900 operating cycles of "CO" at rated supply voltage;
- 50 operating cycles of "CO" at minimum supply voltage.

For extended mechanical endurance tests, the above test sequence was repeated.

Before, after and during the test program, the below operating characteristics were recorded or evaluated.

- operating time;
- maximum energy consumption.

Characteristic test data

Rated supply voltage	220	Vdc
Minimum supply voltage	187	Vdc
Maximum supply voltage	242	Vdc
Number of operating cycles of DES	2000	

Requirements

After the total test program, all parts, including contacts, shall be in good condition and shall not show undue wear in accordance with the relevant subclauses of IEC 62271-1.

Result

The test object passed the tests.

The operating characteristics before, during and after the tests can be found in Appendix B and C.

-46-

3110-17

Fixed contact of 252 kV DES DS after 2000 cycles of mechanical endurance

Contact structure of 252 kV DES DS after 2000 cycles of mechanical endurance